Chemical reactions and physical changes

1. List 2 examples of physical changes
 - Melting
 - Freezing
 - Evaporating
 - Condensing
 - Dissolving

2. List 3 ways you can tell a chemical reaction has happened
 - Fizzing/bubbles
 - Colour change
 - Temperature change (gets hot/cold)

3. What do we call the chemicals that we have at the start of a reaction?
 Reactants

4. What do we call the chemicals that are made in the reaction?
 Products

5. How is a chemical reaction different to a physical change?
 - The products of a chemical reaction are not the same as the reactants
 - It is often difficult to reverse a chemical reaction

Exothermic and endothermic reactions

6. What do we call a reaction which releases heat?
 Exothermic

7. What do we call a reaction which takes in heat?
 Endothermic

8. List examples of exothermic reactions
 - Combustion
 - Oxidation
 - Neutralisation

9. Name an example of an endothermic reaction
 Thermal decomposition

10. The temperature of a reactant is 30°C. During the reaction the temperature reaches 50°C. Is the reaction exothermic or endothermic? Explain how you can tell
 - Exothermic
 - The temperature increased

11. The temperature of a reactant is 30°C. During the reaction the temperature reaches 15°C. Is the reaction exothermic or endothermic? Explain how you can tell
 - Endothermic
 - The temperature decreased

Neutralisation

12. State the pH range for an acid
 Between 1-6

13. State the pH range for an alkali
 Between 8 and 14
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. What pH does a neutral solution have?</td>
<td>7</td>
</tr>
</tbody>
</table>
| 15. State 2 ways to measure the pH of a solution | • Universal indicator
• pH probe |
| 16. State the colour of a strong acid with universal indicator | Red |
| 17. State the colour of a weak acid with universal indicator | Orange/yellow |
| 18. State the colour of a neutral solution with universal indicator | Green |
| 19. State the colour of a weak alkali with universal indicator | Blue |
| 20. State the colour of a strong alkali with universal indicator | Purple |
| 21. How do you neutralise an acid? | Add an alkali |
| 22. How do you neutralise an alkali? | Add an acid |
| 23. What product is always made in a neutralisation reaction? | A salt |
| 24. Acid + alkali → | salt + water |
| 25. What does combustion mean? | Burning |
| 26. Is combustion exothermic or endothermic? | Exothermic |
| 27. Name the gas that is needed for combustion | Oxygen |
| 28. Name the products made from the combustion of coal, oil and gas | • Carbon dioxide
• Water
• Carbon monoxide (if combustion is incomplete) |
| 29. Name the product made when a fuel contains sulphur | Sulphur dioxide |
| 30. What happens to a compound in a thermal decomposition reaction? | • It breaks down
• When it is heated |
| 31. Is thermal decomposition exothermic or endothermic? Why? | • Endothermic
• It needs to be heated |
| 32. Calcium carbonate → | calcium oxide + carbon dioxide |
| 33. Magnesium carbonate → | magnesium oxide + carbon dioxide |
| 34. __________ → sodium oxide + carbon dioxide | Sodium carbonate |
Metals and water

| 35. Describe the reactions of potassium, sodium and lithium with water | • Fizz, give off hydrogen
• Move around
• Spark
• Turn water blue if it has universal indicator in it |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36. Sodium + water \rightarrow</td>
<td>sodium hydroxide + hydrogen</td>
</tr>
<tr>
<td>37. Potassium + water \rightarrow</td>
<td>potassium hydroxide + hydrogen</td>
</tr>
<tr>
<td>38. Describe the reactions of copper and magnesium with water</td>
<td>Don’t react immediately (you probably won’t see any reaction)</td>
</tr>
</tbody>
</table>

Metals and oxygen

<table>
<thead>
<tr>
<th>39. Describe what happens when copper reacts with oxygen</th>
<th>Outside becomes black (this is copper oxide)</th>
</tr>
</thead>
</table>
| 40. Describe what happens when magnesium reacts with oxygen | • Bright spark
• White powder formed (this is magnesium oxide) |

Reactivity series

| 41. I can put the following metals in order of their reactivity: lithium, magnesium, potassium, copper, sodium, calcium | • Potassium
• Sodium
• Lithium
• Calcium
• Magnesium
• Copper |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>42. What do we call a reaction where one metal takes the place of the other metal?</td>
<td>Displacement</td>
</tr>
<tr>
<td>43. Magnesium sulphate + calcium \rightarrow</td>
<td>Calcium sulphate + magnesium</td>
</tr>
</tbody>
</table>
| 44. Calcium sulphate + copper \rightarrow | No reaction
Because calcium is more reactive than copper |