Contact and Non-Contact Forces	
1. Scalar quantities have only a[1]	size (magnitude) [1]
2. Vector quantities have[1]	size (magnitude) and direction [1]
3. Is speed a scalar or vector quantity? [1]	Scalar [1]
4. Is velocity a scalar or vector quantity? [1]	Vector [1]
 What do we call forces that happen when objects touch? [1] 	Contact Forces[1]
 What do we call forces that happen when objects do not touch? [1] 	Non-Contact Forces[1]
7. Give an example of a contact force [1]	 Friction Air resistance Tension in ropes[1]
8. Give an example of a non-contact force[1]	 Magnetic force Gravitational force Electrostatic force[1]
Resultant forces	
1. State the unit for force [1]	N (Newton) [1]
2. What do we call the overall force actin on an object? [1]	Resultant force [1]
3. When forces are balanced, what will the resultant force be?	0N (Zero Newton's) [1]
 What do we call the force a surface exerts on an object resting on the surface? (the forces pushes upwards on the object) [1] 	Reaction force[1]
5. What are the forces acting on a book on a table? [1]	 Weight (downwards) Beaction (unwards) [1]
 6. What are the horizontal forces acting on an accelerating car? [3] 	 Thrust Friction In opposite directions
 What are the vertical forces acting on a boat? [2] 	Weight (downwards)Upthrust (upwards)
8. State the resultant force on the object.	• 5N
	• To the left
9. State the resultant force on the object 80N 100N	 20N To the right

10.An object has an upward force of 100N and a downward force of 50N acting on it. State the resultant force and direction? [1]	50N upwards [1]
11.Name of the force that causes heating effects [1]	Friction [1]
Newton's First Law	
1. What happens to a stationary object if the forces are balanced?	It stays stationary
2. What happens to a stationary object if the forces are not balanced?	It will start to move (in the direction of the larger force)
3. What happens to a moving object if the forces are balanced?	It stays moving at the same speed And in the same direction
4. What happens to a moving object if the forces are not balanced?	It will change speed or direction
 If there is a resultant force on a moving object will it accelerate or travel at a steady speed? [1] 	Accelerate[1]
6. What is the resultant force on a stationary object? [1]	0N (Zero Newton's) [1]
7. What is the resultant force on an object moving at a constant speed in the same direction?	0N (Zero Newton's) [1]
8. If a car is travelling at constant 25m/s due north, what is the resultant force? [1]	0N (Zero Newton's) [1]
Newton's Second Law	
1. What is the equation relating force, mass and acceleration? [1]	Force = mass x acceleration [1]
 If an object has an acceleration of 10 m/s² and a mass of 2 kg what is the size of the force? [4] 	F = ma = 2x10 = 20N [4]
 If an object has an acceleration of 5 m/s² and a mass of 20 kg what is the size of the force? [4] 	F= ma = 20x5 =100N [4]
 If a 20N force is applied to a mass of 2 kg what is the acceleration? [4] 	a = F \div m = 20 \div 2 = 10m/s ² [4]
 What is the mass of a toy car if it has an acceleration of 2 m/s² when a force of 8 N is applied? [4] 	$m = \overline{F \div a}$ $= 8 \div 2$ $= 4 \text{kg} \qquad [4]$

Ne	ewton's Third Law			
1.	Newton's Third Law is	every action has an equal and opposite reaction [1]		
2.	If a woman pushes on a wall with a force of 50N, what will the reaction force from the wall be?	50N		
M	Mass, weight and gravity			
1.	What is mass? [1]	Amount of material (stuff) on object has [1]		
2.	Weight is the on an object due to gravity [1]	force [1]		
3.	How can weight be measured? [1]	With a Newton meter [1]		
4.	How does the gravitational field strength change as you get closer to a mass? [1]	Becomes stronger [1]		
5.	What is the unit of mass? [1]	Kilograms[1]		
6.	What is the equation to calculate weight? [1]	Weight = mass x gravity [1]		
7.	If a boy has a mass of 50kg, what is his weight? (g= 10 N/Kg) [4]	W = m x g = 50 x 10 = 500 N [4]		
8.	Describe the relationship between weight and mass [1]	Directly proportional [1]		
9.	What does this symbol mean?	Directly proportional		
10	What do we call the point at which the s of an object is thought be concentrated ? [1]	Centre of mass [1]		
Work and energy				
1.	When is work done?	When a force moves an object [1]		
2.	State the unit for work	J (Joule) [1]		
3.	What is the equation to calculate the work done? [1]	Work done = Force x distance [1]		
4.	What is transferred when a force moves an object? [1]	Energy [1]		
5.	If 1N moves an object 1m, how much energy is transferred? [1]	1J (Joule) [1]		

6.	An object is lifted 10m by a force of 45N. How much work is done to lift the object? [4]	Work = force x distance = 45 x 10 = 450 J [4]
7.	What happens to temperature when work is down against frictional forces?	It goes up/ it gets hotter
Fo	rces and Elasticity	
1.	What property does an object have if it goes back to its original shape after a force has been applied? [1]	Elastic
2.	How do we describe an object that does not go back to its original shape when it has been stretched?	Inelastic
3.	What type of energy is stored in a stretched elastic band [1]	Elastic potential energy [1]
4.	Describe the relationship between force on an elastic object and extension, up to the limit of proportionality	Directly proportional
5.	If a spring with a spring constant of 5 N/m, stretches 2 m, what was the force applied? [4]	Force = spring constant x extension = 5 x 2 = 10N
6.	If a spring with a spring constant of 5 N/m, stretches 20 cm, what was the force applied? [5]	Convert cm to m: 20cm = 0.2m Force = spring constant x extension = 5 x 0.2 = 1N (5 marks, 1 extra for converting to m)
7.	If a force of 50N is applied to a spring which stretches 2 m, what is the size of the spring constant? [4]	Spring constant = force ÷ extension = 50 ÷ 2 = 25 N/m
8.	A spring with a spring constant of 3N/m is compressed by 1 m. Calculate the force applied. [4]	Force = spring constant x compression = 3 x 1 = 3N
9.	Describe the relationship between the amount of work done to stretch a spring and the amount of energy stored in a spring (up to the limit of proportionality)	They are the same
10	If 50N are used to stretch a spring, state how much energy is stored in the spring [1]	50N

Investigating Springs		
1. What type of relationship is shown in the graph below? [1]	Linear [1]	
2. Name the point marked A on the graph below 10 10 10 10 10 10 10 10 15 20 25	Limit of proportionality	
3. Describe the relationship between weight and extension after point A on the graph above	Non-linear	
4. If a spring is stretched past its limit of proportionality, what happens to it?	It doesn't return to its original shapeIt is not elastic	
 A spring is extended beyond the limit of proportionality; as you increase the force what happened to the amount of stretching? [1] 	The spring stretches more [1]	
 6. Calculate the elastic potential energy of a bungee rope when it is stretched 3m. The spring constant for the rope is 7. The equation will be on the sheet. [4] Energy = 0.5 x spring constant x extension x extension 	$E_e = 0.5 \text{ x spring constant x extension x extension}$ = $\frac{1}{2} \times 7 \times 3 \times 3$ = 31.5J	

